Рабочая программа по учебному предмету «Химия» для 8-9 классов.

1.Планируемые результаты освоения учебного предмета 8 класс

Личностные результаты: формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира; воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, прошлому и настоящему многонационального народа России; осознание своей этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества; усвоение гуманистических, демократических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной; формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде; формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах; формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно – оценочной и практической деятельности в жизненных ситуациях; формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно – исследовательской, творческой и других видов деятельности;

Метапредметные результаты:

Умение определять проблемы, то есть устанавливать несоответствие между желаемым и действительным; умение составлять сложный план текста; умение владеть таким видом изложения текста, как повествование; умение под руководством учителя проводить непосредственное наблюдение; умение под руководство учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов; умение использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере знаков химических элементов, химических формул); использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделирования атомов и молекул); умение получать химическую информацию из различных источников; умение определять объект и аспект анализа и синтеза; умение определять компоненты объекта в соответствии с аспектом анализа и синтеза; умение осуществлять

качественное и количественное описание компонентов объекта; умение определять отношения объекта с другими объектами; определять существенные признаки объекта.

Предметные результаты:

формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии; осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира; овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды; формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств; приобретение опыта использования различных методов изучения веществ: наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов; формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф. В результате изучения химии 8 в классе ученик научиться: характеризовать основные методы познания: наблюдение, измерение, эксперимент; описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки; раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии; раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории различать химические и физические явления; называть химические элементы; определять состав веществ по их формулам; определять валентность атома элемента в соединениях; определять тип химических реакций; называть признаки и условия протекания химических реакций; выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта; составлять формулы бинарных соединений; составлять уравнения химических реакций; соблюдать правила безопасной работы при проведении опытов; пользоваться лабораторным оборудованием и посудой; вычислять относительную молекулярную и молярную массы веществ; вычислять массовую долю химического элемента по формуле соединения; вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции.

9 класс

Личностные результаты:

в ценностно-ориентационной сфере - чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность; формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей; в трудовой сфере - готовность к осознанному выбору дальнейшей образовательной траектории; в познавательной (когнитивной, интеллектуальной) сфере - умение управлять своей познавательной деятельностью; формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно - оценочной и практической деятельности в жизненных ситуациях

Метапредметные результаты:

умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности; умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией; умение оценивать правильность выполнения учебной задачи, собственные возможности её решения; владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности; умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы; умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение; умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью; формирование и развитие компетентности в области использования информационно-коммуникационных технологий; формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.

Предметные результаты: давать определения изученных понятий: «химический элемент», «атом», «ион», «молекула», «простые и сложные вещества», «вещество», «химическая формула», «относительная атомная масса», «относительная молекулярная масса», «валентность», «степень окисления», «кристаллическая решетка», «оксиды», «кислоты», «основания»,

«соли», «амфотерность», «индикатор», «периодический закон», «периодическая таблица», «изотопы», «химическая связь», «электроотрицательность», «химическая реакция», «химическое уравнение», «генетическая связь», «окисление», «восстановление», «электролитическая диссоциация», «скорость химической реакции»; описать демонстрационные и самостоятельно проведенные химические эксперименты; описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции; классифицировать изученные объекты и явления; делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных; структурировать изученный материал и химическую информацию, полученную из других источников; моделировать строение атомов элементов 1-3 периодов, строение простых молекул; анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ; проводить химический эксперимент; оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Выпускник научится: описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки; характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества; раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии; изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений; вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости; сравнивать по составу оксиды, основания, кислоты, соли; классифицировать оксиды и основания по свойствам, кислоты и соли по составу; пользоваться лабораторным оборудованием и химической посудой; проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов; различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами; раскрывать смысл периодического закона Д. И. Менделеева; описывать и характеризовать табличную форму периодической системы химических элементов; характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция; различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую; изображать электронно-ионные формулы веществ, образованных химическими связями разного вида; выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических; характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов; характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева; объяснять суть химических

процессов и их принципиальное отличие от физических; называть признаки и условия протекания химических реакций; устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительно - восстановительные); 4) по обратимости процесса (реакции обратимые и необратимые); составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительно - восстановительных реакций; прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции; составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов; выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции; приготовлять растворы с определённой массовой долей растворённого вещества; определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов; проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных ионов определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли; составлять формулы веществ по их названиям; определять валентность и степень окисления элементов в веществах; составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей; объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов; называть общие химические свойства, характерные для групп оксидов: кислотных, основных; называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей; приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей; определять вещество-окислитель и вещество-восстановитель в окислительно - восстановительных реакциях; составлять окислительновосстановительный баланс (для изученных реакций) по предложенным схемам реакций; проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;

Выпускник получит возможность научиться: грамотно обращаться с веществами в повседневной жизни; осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде; понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.; использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ; развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;

объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ. осознавать значение теоретических знаний для практической деятельности человека; описывать изученные объекты как системы, применяя логику системного анализа; применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ; развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники. составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям; приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ; прогнозировать результаты воздействия различных факторов на изменение скорости химической реакции; прогнозировать результаты воздействия различных факторов на смещение химического равновесия. прогнозировать химические свойства веществ на основе их состава и строения; прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав; выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество — оксид — гидроксид — соль; организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.

2.Содержание учебного предмета 8 класс

Тема 1. Введение. (6ч.) Предмет химии. Методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление его результатов. Химия — наука о веществах, их свойствах и превращениях. Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах. Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия. Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева. Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества. Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Демонстрации. Модели (шаростержневые) различных простых и сложных веществ. Коллекция стеклянной химической посуды. Коллекция материалов и изделий из них на основе алюминия. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты. Сравнение свойств твердых кристаллических веществ и растворов. **2.** Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Тема 2. Атомы химических элементов. (10 ч.)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома, атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса». Изменение числа протонов в ядре атома - образование новых химических элементов. Изменение числа нейтронов в ядре атома - образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента. Электроны. Строение электронных оболочек атомов химических элементов № 1-20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне). Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода. Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи. Взаимодействие атомов химических элементов-неметаллов между собой - образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы. Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи. Взаимодействие атомов химических элементов-металлов между собой - образование металлических кристаллов. Понятие о металлической связи. **Лабораторные опыты.** Моделирование принципа действия сканирующего микроскопа.

Тема 3. Простые вещества. (7 ч.)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов. Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы. Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная

и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «число Авогадро».

Демонстрации. Образцы металлов. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Лабораторный опыты. Ознакомление с коллекцией металлов. Ознакомление с коллекцией неметаллов. Тема 4. Соединения химических элементов. (14 ч.)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак. Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде. Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде. Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция. Аморфные и кристаллические вещества. Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток. Вещества молекулярного строения. Закон постоянства состава для веществ молекулярного строения. Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей. Дистилляция воды.

Лабораторные опыты: Ознакомление с коллекцией оксидов. Ознакомление со свойствами аммиака. Качественная реакция на углекислый газ. Определение рН растворов кислоты, щелочи и воды. Определение рН лимонного и яблочного соков на срезе плодов. Ознакомление с коллекцией солей. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей кристаллических решёток. Ознакомление с образцом горной породы.

Тема 5. Изменения происходящие с веществами. (11 ч.)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, - физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование. Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света. Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций. Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей. Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции. Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами. Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца. Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения - взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи.1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка иода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода; и) электролиз воды.

Лабораторные опыты. Прокаливание меди в пламени спиртовки или горелки. Замещение меди в растворе хлорида меди (II) железом.

Тема 6. Растворение. Растворы. Реакции ионного обмена и окислительно-восстановительные реакции. (16 ч.)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства. Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты. Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений. Классификация ионов и их свойства. Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот. Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании. Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей. Обобщение сведений об оксидах, их классификации и химических свойствах. Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ. Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление. Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса. Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. Движение окрашенных ионов в электрическом поле. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты: Взаимодействие растворов хлорида натрия и нитрата серебра. Получение нерастворимого гидроксида и взаимодействие его с кислотами. Взаимодействие кислот с основаниями. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с металлами. Взаимодействие кислот с солями. Взаимодействие щелочей с кислотами. Взаимодействие шелочей с оксидами неметаллов. Взаимодействие шелочей с солями. Получение и свойства нерастворимых оснований. Взаимодействие основных оксидов с водой. Взаимодействие

кислотных оксидов с щелочами. Взаимодействие кислотных оксидов с водой. Взаимодействие солей с кислотами. Взаимодействие солей с шелочами. Взаимодействие солей с олей с металлами.

Тема 7. Свойства растворов электролитов.

Ионные реакции. Условия течения химических реакций между растворами электролитов до конца. Свойства кислот, оснований, оксидов, и солей. Решение экспериментальных задач.

Рефлексивная фаза. Итоговое повторение, демонстрация личных достижений учащихся.

9 класс.

Тема 1.Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева (9 ч).

Характеристика элемента по его положению в Периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и окисления-восстановления. Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента. Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Химическая организация живой и неживой природы. Химический состав ядра, мантии и земной коры. Химические элементы в клетках живых организмов. Макро- и микроэлементы. Обобщение сведений о химических реакциях. Классификация химических реакций по различным признакам: «число и состав реагирующих и образующихся веществ», «тепловой эффект», «направление», «изменение степеней окисления элементов, образующих реагирующие вещества», «фаза», «использование катализатора». Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций. Катализаторы и катализ. Ингибиторы. Антиоксиданты.

Демонстрации.

Различные формы таблицы Д. И. Менделеева. Модели атомов элементов 1—3-го периодов. Модель строения земного шара (поперечный разрез). Зависимость скорости химической реакции от природы реагирующих веществ. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»). Зависимость скорости химической реакции от температуры реагирующих веществ. Гомогенный и гетерогенный катализы. Ферментативный катализ. Ингибирование.

Тема 2. Металлы (20 ч)

Положение металлов в Периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей, а также в свете их положения в электрохимическом ряду напряжений металлов. Коррозия металлов и способы борьбы с ней. Металлы в природе. Общие способы их получения.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы -простые вещества. Важнейшие соединения щелочноземельных металлов -оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты, фосфаты), их свойства и применение в народном хозяйстве. Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия - оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений. Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe⁺² и Fe⁺³. Важнейшие соли железа. Значение железа и его соединений для природы и народного хозяйства.

Демонстрации.

Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты.

Взаимодействие растворов кислот и солей с металлами. Ознакомление с рудами железа. Окрашивание пламени солями щелочных металлов. Взаимодействие кальция с водой. Получение гидроксида кальция и исследование его свойств. Получение гидроксида алюминия и исследование его свойств. Взаимодействие железа с соляной кислотой. Получение гидроксидов железа (II) и (III) и изучение их свойств.

Практикум 1. Свойства металлов и их соединений (3 ч)1

1. Осуществление цепочки химических превращений. 2. Получение и свойства соединений металлов. 3. Решение экспериментальных задач на распознавание и получение соединений металлов.

Тема 3. Неметаллы (27 ч).

Общая характеристика неметаллов: положение в Периодической системе химических элементов Д. И. Менделеева, особенности строения атомов, электроотрицательность (ЭО) как мера «неметалличности», ряд ЭО. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл» и «неметалл». Водород. Положение водорода в Периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение. Вода. Строение молекулы. Водородная химическая связь. Физические свойства воды. Аномалии свойств воды. Гидрофильные и гидрофобные вещества. Химические свойства воды. Круговорот воды в природе. Водоочистка. Аэрация воды. Бытовые фильтры. Минеральные воды. Дистиллированная вода, ее получение и применение. Общая характеристика

галогенов. Строение атомов. Простые вещества и основные соединения галогенов, их свойства. Сведения о хлоре, броме, фторе и йоде. Применение галогенов и их соединений в народном хозяйстве. Сера.

Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Серная кислота и ее соли, их применение в народном хозяйстве. Производство серной кислоты.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV).

Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения. Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V) и ортофосфорная кислота, фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности. Демонстрации. Образцы галогенов - простых веществ. Взаимодействие галогенов с натрием, с алюминием. Вытеснение хлором брома или иода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом. Взаимодействие концентрированной азотной кислоты с медью. Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. Получение и распознавание водорода. Исследование поверхностного натяжения воды. Растворение перманганата калия или медного купороса в воде. Гидратация обезвоженного сульфата меди (II). Изготовление гипсового отпечатка. Ознакомление с коллекцией бытовых фильтров. Ознакомление с составом минеральной воды. Качественная реакция на галогенид-ионы. Получение и распознавание кислорода. Горение серы на воздухе и в кислороде. Свойства разбавленной серной кислоты. Изучение свойств аммиака. Распознавание солей аммония. Свойства разбавленной азотной кислоты. Взаимодействие концентрированной азотной кислоты с медью. Горение фосфора на воздухе и в кислороде. Распознавание фосфатов. Горение угля в кислороде. Получение угольной кислоты и изучение ее свойств. Переход карбонатов в гидрокарбонаты. Разложение гидрокарбоната натрия. Получение кремневой кислоты и изучение ее свойств.

Практикум 2. Свойства соединений неметаллов (2 ч)1

Решение экспериментальных задач по теме « Неметаллы». Получение, собирание и распознавание газов.

Тема 4. Обобщение знаний по химии за курс основной школы. (7 ч)

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Физический смысл порядкового номера элемента, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов.

Значение периодического закона. Виды химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ. Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; наличие границы раздела фаз; тепловой эффект; изменение степеней окисления атомов; использование катализатора; направление протекания). Скорость химических реакций и факторы, влияющие на нее. Обратимость химических реакций и способы смещения химического равновесия. Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксидыи гидроксиды (основания, кислоты, амфотерные гидроксиды), соли. Их состав, классификация и общие химические свойства в свете теории электролитической диссоциации

3. Тематическое планирование, в том числе с учетом рабочей программы воспитания с указанием количества часов, отводимых на освоение каждой темы

№ п/п	Разделы, темы программы	Общее количество часов	Использование воспитательного потенциала урока, для реализации задач программы воспитания		
			(основополагающие идеи воспитания, виды и		
			формы деятельности)		
	Химия. 8 класс				
1	Введение	6	Воспитание активной жизненной позиции,		
2	Атомы химических элементов	10	нравственно-этических принципов и привычек, убежденности в том, что применение полученных знаний и умений по химии является объективной необходимостью для безопасной работы с веществами и материалами в быту и на производстве. Воспитание культуры мышления и речи, познавательного интереса к учебному		
3	Простые вещества	7			
4	Соединения химических элементов	14			
5	Изменения происходящие с веществами	11			

7	Растворение. Растворы. Реакции ионного обмена и окислительновосстановительные реакции. Итоговое повторение, демонстрация личных достижений учащихся. Итого	16 4 68	предмету, через выполнение групповых и индивидуальных проектов, практических и лабораторных работ, организацию работы с текстами учебников, заданий в рабочей тетради, в ходе которых у обучающихся развиваются способности к сотрудничеству, общению, работе в коллективе. Воспитание патриотизма, любви к		
		Химия 9 класс	Родине.		
лимия у класс					
2	Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Металлы	20	Воспитание трудолюбия, сознательного, творческого отношения к образованию и труду, подготовка к сознательному выбору профессии. Воспитание экологической культуры, культуры здорового и безопасного образа жизни, ценностного отношения к прекрасному, формирование основ эстетической культуры. Воспитание культуры мышления и речи, познавательного интереса к учебному предмету, через выполнение групповых и индивидуальных проектов, практических и лабораторных работ, организацию работы с текстами учебников, заданий в рабочей тетради, в ходе которых у обучающихся развиваются способности к сотрудничеству, общению, работе в коллективе.		
3	Неметаллы	27			
4	Обобщение знаний по химии за курс основной школы. Подготовка к ГИА.	10			
	Итого:	66			